skip to main content


Search for: All records

Creators/Authors contains: "Doppmann, Gregory"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    High-resolution near-infrared ground-based spectroscopic observations of comet 67P/Churyumov–Gerasimenko near its maximum activity in 2021 were conducted from the W. M. Keck Observatory, using the facility spectrograph NIRSPEC. 67P is the best-studied comet to date because of the unprecedented detail and insights provided by the Rosetta mission during 2014–2016. Because 67P is the only comet where the detailed abundances of many coma volatiles were measured in situ, determining its composition from the ground provides a unique opportunity to interpret Rosetta results within the context of the large database of ground-based compositional measurements of comets. However, previous apparitions, including in 2015, have been unfavorable for in-depth ground-based studies of parent volatiles in 67P. The 2021 apparition of 67P was thus the first-ever opportunity for such observations. We report gas spatial distributions, rotational temperatures, production rates, and relative abundances (or stringent upper limits) among seven volatile species: C2H2, C2H6, HCN, NH3, CH3OH, H2CO, and H2O. The measured abundances of trace species relative to water reveal near average or below average values compared to previous comets studied at infrared wavelengths. Both gas rotational temperatures and the spatial distributions of H2O, C2H6, and HCN measured with Keck-NIRSPEC in 2021 are consistent with the outgassing patterns revealed by Rosetta in 2015 at very similar heliocentric distance  (post-perihelion). These results can be integrated with both Rosetta mission findings and ground-based cometary studies of the overall comet population, for which we encourage a wide-scale collaboration across measurement techniques.

     
    more » « less
  2. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    NIRSPEC is a high-resolution near-infrared echelle spectrograph on the Keck II telescope that was commissioned in 1999 and upgraded in 2018. This recent upgrade was aimed at improving the sensitivity and longevity of the instrument through the replacement of the spectrometer science detector (SPEC) and slit-viewing camera (SCAM). Commissioning began in 2018 December, producing the first on-sky images used in the characterization of the upgraded system. Through the use of photometry and spectroscopy of standard stars and internal calibration lamps, we assess the performance of the upgraded SPEC and SCAM detectors. First, we evaluate the gain, readnoise, dark current, and the charge persistence of the spec detector. We then characterize the newly upgraded spectrometer and the resulting improvements in sensitivity, including spectroscopic zero points, pixel scale, and resolving power across the spectrometer detector field. Finally, for SCAM, we present zero points, pixel scale, and provide a map of the geometric distortion of the camera. 
    more » « less
  3. null (Ed.)